Senior Author Journal Publications

[1]   Jens Ducrée. Anti-counterfeit technologies for microfluidic “Lab-on-a-Disc” systems. Sensors & Actuators A – Physical, 354:114235, 1 May 2023, DOI:10.1016/j.sna.2023.114235.

[2]   Ju-Fan Zhang and Jens Ducrée. Proposition of atomic and close-to-atomic scale manufacturing. Advances in Manufacturing, 04 May 2023, DOI:10.1007/s40436-023-00442-4.

[3]   Rohit Mishra, Jennifer Gaughran, David Kinahan, Mohamad Ramadan, and Jens Ducrée. Functional membranes for enhanced rotational flow control on centrifugal microfluidic platforms. Encyclopedia of Smart Materials, 3:119–127, 2022, DOI:10.1016/B978-0-12-815732-9.00145-5.

[4]   Rohit Mishra, Rizwan Alam, Darren McAuley, Tirinder Bharaj, Danielle Chung, David J. Kinahan, Charles Nwankire, Karen S. Anderson, and Jens Ducrée. Solvent selective membrane routing and microfluidic architecture towards centrifugal automation of customizable bead based immunoassays. Sensors & Actuators B – Chemical, 356:131305, 2022, DOI:10.1016/j.snb.2021.131305.

[5]   Jens Ducrée. On-board reagent storage and release by solvent-selective, rotationally opened membranes – A digital twin approach. Microfluidics & Nanofluidics, 26(39):1–17, 2022, DOI:10.1007/s10404-022-02519-1.

[6]   David J. Kinahan, Robert Burger, Daryl Lawlor, Philip L. Early, Abhishek Vembadi, Niamh A. McArdle, Niamh A. Kilcawley, Macdara T. Glynn, and Jens Ducrée. Centrifugally automated solid-phase extraction of DNA by solvent-selective routing and chemically powered centripetal pumping of peripherally stored liquid reagents. Biosensors & Bioelectronics, 9:100085, 2021, DOI:10.1016/j.biosx.2021.100085.

[7]   Jens Ducrée. Systematic review of centrifugal valving based on digital twin modelling towards highly integrated Lab-on-a-Disc systems. Nature Microsystems & Nanoengineering, 7(104):1–26, 2021, DOI:10.1038/s41378-021-00317-3.

[8]    Jens Ducrée. Design optimization for multiplexed centrifugal microfluidic “Lab-on-a-Disc” systems towards fluidic larger-scale integration. Applied Sciences, 11(13):5839, 2021, DOI:10.3390/app11135839. Special Issue “Fluid Flows Modelling in Microfluidic Systems”.

[9]   Jens Ducrée. Secure air traffic control at the hub of multiplexing on the centrifugo-pneumatic Lab-on-a-Disc platform. Micromachines, 12(6):700, 2021, DOI:10.3390/mi12060700. Special issue “Lab-on-a-Disk”.

[10]   Brian D. Henderson, David J. Kinahan, Jeanne Rio, Rohit Mishra, Damien King, Saraí M. Torres-Delgado, Dario Mager, Jan Korvink, and Jens Ducrée. Siphon-controlled automation on a Lab-on-a-Disc using event-triggered dissolvable film valves. Biosensors, 11(3):73, 2021, DOI:10.3390/bios11030073. note: front cover.

[11]   Jens Ducrée, Martin Etzrodt, Sönke Bartling, Ray Walshe, Tomás Harrington, Neslihan Wittek, Sebastian Posth, Kevin Wittek, Andrei Ionita, Wolfgang Prinz, Dimitrios Kogias, Tiago Paixão, Iosif Peterfi, and James Lawton. Unchaining collective intelligence for science, research and technology development by blockchain-boosted community participation. Frontiers in Blockchain, 4:631648, 2021, DOI:10.3389/fbloc.2021.631648.

[12]   Jens Ducrée. Research – A blockchain of knowledge. Blockchain – Research & Applications, 1(1-2):100005, 2020, DOI:10.1016/j.bcra.2020.100005.

[13]   Jens Ducrée, Max Gravitt, Ray Walshe, Sönke Bartling, Martin Etzrodt, and Tomás Harrington. Open platform concept for blockchain-enabled crowdsourcing of technology development and supply chains. Frontiers in Blockchain, 3:386525, 2020, DOI:10.3389/fbloc.2020.586525.

[14]   Robert Burger, David Kinahan, Hélène Cayron, Nuno Reis, João Garcia da Fonseca, and Jens Ducrée. Siphon-induced droplet break-off for enhanced mixing on a centrifugal platform. Inventions, 5(1), 2020, DOI:10.3390/inventions5010001.

[15]   Jens Ducrée, Martin Etzrodt, Bert Gordijn, Max Gravitt, Sönke Bartling, Ray Walshe, and Tomás Harrington. Blockchain for organising effective grass-roots actions on a global Commons: Saving the planet. Frontiers in Blockchain, 3:33, 2020, DOI:10.3389/fbloc.2020.00033.

[16]    Jens Ducrée. Efficient development of integrated Lab-on-a-Chip systems featuring operational robustness and manufacturability. Micromachines, 10(12):886–897, 2019, DOI:10.3390/mi10120886. note: selected as particular interest paper.

[17]   Damien King, Macdara Glynn, Sandra Cindric, David Kernan, Tríona M. O’Connell, Roya Hakimjavadi, Sinéad Kearney, Tobias Ackermann, Xavier Muñoz, Andreu Llobera, Ulf Simonsen, Britt Elmedal Laursen, Eileen Redmond, Paul A. Cahill, and Jens Ducrée. Label-free multi parameter optical interrogation of endothelial activation in single cells using a Lab on a Disc platform. Scientific Reports, 9:4157, 2019, DOI:10.1038/s41598-019-40612-8.

[18]   Celina M. Miyazaki, David K. Kinahan, Rohit Mishra, Faith Mangwanya, Marystela Ferreira, and Jens Ducrée. Multiplexed SPR detection of immunoassays on a highly integrated centrifugal Lab-on-a-Disc platform. Biosensors & Bioelectronics, 119:86–93, 2018, DOI:10.1016/j.bios.2018.07.056.

[19]   Rohit Mishra, Julia Zapatero-Rodríguez, Shikha Sharma, Domhnall Kelly, Darren McAuley, Sarah Gilgunn, Richard O’Kennedy, and Jens Ducrée. Automation of multi-analyte prostate cancer biomarker immunoassay panel from whole blood by minimum-instrumentation rotational flow control. Sensors & Actuators B – Chemical, 263:668–675, June 15 2018, DOI:10.1016/j.snb.2018.02.015.

[20]   Jens Ducrée. Efficient development of microfluidic solutions for bioanalytical “point-of-use” testing towards high-technology-readiness levels -— A platform-based design-for-manufacture approach. Proceedings – An Open Access Journal by MDPI, 2(13):1097, 2018, DOI:10.3390/proceedings2131097.

[21]   Macdara T. Glynn, David J. Kinahan, Niamh A. McArdle, Jane L. Kendlin, Tríona M. O’Connell, and Jens Ducrée. A portable optical reader and wall projector towards enumeration of bio-conjugated beads or cells. PLOS ONE, 12(12):e0189923, 2017, DOI:10.1371/journal.pone.0189923.

[22]   Celina M. Miyazaki, Rohit Mishra, David J. Kinahan, Marystela Ferreira, and Jens Ducrée. Polyethylene imine/graphene oxide layer-by-layer surface functionalization for significantly improved limit of detection and binding kinetics for immunoassays on acrylate surfaces. Colloids & Interfaces B: Biointerfaces, 158:167–174, 2017, DOI:10.1016/j.colsurfb.2017.06.042.

[23]   David J. Kinahan, Marine Renou, Dirk Kurzbuch, Niamh A. Kilcawley, Éanna Bailey, Macdara T. Glynn, Collette McDonagh, and Jens Ducrée. Baking powder actuated centrifugo-pneumatic valving for automation of multi-step bioassays. Micromachines, 7(10):175–184, 2016, DOI:10.3390/mi7100175.

[24]   David J. Kinahan, Philip L. Early, Abhishek Vembadi, Eoghan MacNamara, Niamh A. Kilcawley, Thomas Glennon, Dermot Diamond, Dermot Brabazon, and Jens Ducrée. Xurography actuated valving for centrifugal flow control. Lab on a Chip, 16(18):3454–3459, 2016, DOI:10.1039/C6LC00568C.

[25]   Jennifer Gaughran, David Boyle, James Murphy, Robert Kelly, and Jens Ducrée. Phase-selective graphene oxide membranes for advanced microfluidic flow control. Nature Microsystems & Nanoengineering, 2:16008, 2016, DOI:10.1038/micronano.2016.8. selected as feature article on journal cover.

[26]   David J. Kinahan, Sinéad M. Kearney, Niamh A. Kilcawley, Philip L. Early, Macdara T. Glynn, and Jens Ducrée. Density-gradient mediated band extraction of leukocytes from whole blood through centrifugo-pneumatic siphon valving. PLOS ONE, 11(5):e0155545, 2016, DOI:10.1371/journal.pone.0155545.

[27]   Macdara Glynn, Charles Nwankire, Kate Lemass, David Kinahan, and Jens Ducrée. Quantitative distribution and cluster sizing of CTC events from a blood sample using a size exclusion centrifugal rail. Nature Microsystems & Nanoengineering, 1:15018, 2015, DOI:10.1038/micronano.2015.18.

[28]   Gregor S. Kijanka, Ivan K. Dimov, Robert Burger, and Jens Ducrée. Real-time monitoring of cell migration, phagocytosis and cell surface receptor dynamics using a novel, live-cell opto-microfluidic technique. Analytica Chimica Acta, 872:95–99, 2015, DOI:10.1016/j.aca.2014.12.035.

[29]   Nikolay Dimov, Eoin Clancy, Jennifer Gaughran, David Boyle, Darren Mc Auley, Macdara Glynn, Thomas Barry, Louise Barrett, Terry J. Smith, and Jens Ducrée. Solvent-selective liquid routing for centrifugally integrated solid-phase extraction of RNA. Microfluidics & Nanofluidics, 18(5-6):859–871, 2015, DOI:10.1007/s10404-014-1477-9.

[30]   Charles E. Nwankire, Anita Venkatanarayanan, Thomas Glennon, Tia E. Keyes, Robert J. Forster, and Jens Ducrée. Label-free electrochemical impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosensors & Bioelectronics, 68:382–389, 2015, DOI:10.1016/j.bios.2014.12.049.

[31]   Damien King, Cristina Rius Leiva, Macdara Glynn, Beatriz Julia Dorado de la Corta, Sandra Cindric, David Kernan, Vicente Andrés García, Andreu Llobera, Elise Røge Hedegaard, Ulf Simonsen, and Jens Ducrée. Living photonics (LiPhos) single cell analysis – Label free detection methods. Acta Physiologica, 215(706):32–33, September 2015, DOI:10.1111/apha.12602.

[32]   Robert Burger, Dirk Kurzbuch, Robert Gorkin, Gregor Kijanka, Macdara Glynn, Colette McDonagh, and Jens Ducrée. An integrated centrifugo-opto-microfluidic platform for arraying, analysis, identification and manipulation of individual cells. Lab on a Chip, 15(2):378–381, 2015, DOI:10.1039/c4lc01002g.

[33]   David Kinahan, Sinéad Kearney, Olivier Faneuil, Macdara Glynn, and Jens Ducrée. Paper imbibition for timing of multi-step liquid handling protocols on event-triggered centrifugal microfluidic lab-on-a-disc platforms. RSC Advances, 5(3):1818–1826, 2015, DOI:10.1039/C4RA14887H.

[34]   Daniel Kirby, Macdara Glynn, Gregor Kijanka, and Jens Ducrée. Rapid and cost-efficient enumeration of rare cancer cells from whole blood by low-loss centrifugo-magnetophoretic purification under stopped-flow conditions. Cytometry Part A, 87(1):74–80, 2015, DOI:10.1002/cyto.a.22588.

[35]   Gerson R. Aguirre, Vitaly Efremov, Maria Kitsara, and Jens Ducrée. Integrated micromixer for incubation and separation of cancer cells on a centrifugal platform using inertial and Dean forces. Microfluidics & Nanofluidics, 18(3):513–526, 2015, DOI:10.1007/s10404-014-1450-7.

[36]   Damien King, Macdara Glynn, Sandra Cindric, Richard Lalor, Tríona O’Connell, and Jens Ducrée. Utilising the microfluidic lab-in-a-trench platform to enable single cell level drug screening of hepatocytes. Acta Physiologica, 215(706):96, September 2015, DOI:10.1111/apha.12603.

[37]   Tríona M. O’Connell, Damien King, Chandra Kumar Dixit, Brendan O’Connor, Dermot Walls, and Jens Ducrée. Sequential glycan profiling on individual cells by the microfluidic lab-in-a-trench platform: A new era in experimental cell biology. Lab on a Chip, 14(18):3629–3639, 2014, DOI:10.1039/c4lc00618f.

[38]   Macdara Glynn, David Kinahan, and Jens Ducrée. Rapid, low-cost and instrument-free CD4+ cell counting for HIV diagnostics in resource-poor settings. Lab on a Chip, 14(15):2844–2851, 2014, DOI:10.1039/c4lc00264d.

[39]   David J. Kinahan, Sinéad M. Kearney, Nikolay Dimov, Macdara Glynn, and Jens Ducrée. Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms. Lab on a Chip, 14(13):2249–2258, 2014, DOI:10.1039/C4LC00380B.

[40]   Charles Nwankire, Monika Czugala, Robert Burger, Kevin J. Fraser, Tríona M. O’Connell, Thomas Glennon, Blessing E. Onwuliri, Isikaku E. Nduaguibe, Dermot Diamond, and Jens Ducrée. A portable centrifugal analyser for liver function screening. Biosensors & Bioelectronics, 56:352–358, 2014, DOI:10.1016/j.bios.2014.01.031.

[41]   Damien King, Mary O’Sullivan, and Jens Ducrée. Invited review: Optical detection strategies for centrifugal microfluidic platforms. Journal of Modern Optics, 61(2):85–101, 2014, DOI:10.1080/09500340.2013.873496.

[42]   Neus Godino, Elizaveta Vereshchagina, Robert Gorkin III, and Jens Ducrée. Centrifugal automation of a triglyceride bioassay on a low-cost paper-polymer hybrid. Microfluidics & Nanofluidics, 16(5):895–905, 2014, DOI:10.1007/s10404-013-1283-9.

[43]   Macdara Glynn, Daniel Kirby, Danielle Chung, David J. Kinahan, Gregor Kijanka, and Jens Ducrée. Centrifugo-magnetophoretic purification of CD4+ cells from whole blood towards future HIV/AIDS point-of-care applications. Journal of Laboratory Automation, 19(3):285–296, 2014, DOI:10.1177/2211068213504759. Front Cover.

[44]   David J. Kinahan, Sinéad M. Kearney, Macdara T. Glynn, and Jens Ducrée. Spira mirabilis enhanced whole blood processing in a lab-on-a-disk. Sensors & Actuators A – Physical, 215:71–76, 2014, DOI:10.1016/j.sna.2013.11.010.

[45]   Charles Nwankire, Di sien S. Chan, Jennifer Gaughran, Tríona O’Connell, Robert Burger, Robert Gorkin III, and Jens Ducrée. Fluidic automation of nitrate and nitrite bioassays in whole blood by dissolvable-film based centrifugo-pneumatic actuation. Sensors, 13(9):11336–11349, 2013, DOI:10.3390/s130911336.

[46]   Maria Kitsara, Charles E. Nwankire, Lee Walsh, Greg Hughes, Martin Somers, Dirk Kurzbuch, and Jens Ducrée. Spin-coating of hydrophilic polymeric films for enhanced centrifugal flow control by serial siphoning. Microfluidics & Nanofluidics, 16(4):691–699, 2013, DOI:10.1007/s10404-013-1266-x.

[47]   Elizaveta Vereshchagina, Declan McGlade, Macdara Glynn, and Jens Ducrée. A hybrid microfluidic platform for cell-based assays via diffusive and convective trans-membrane perfusion. Biomicrofluidics, 7(3):034101, 2013, DOI:10.1063/1.4804250.

[48]   Macdara Glynn, David Kinahan, and Jens Ducrée. CD4 counting technologies for HIV therapy monitoring in resource-poor settings: State-of-the-art and emerging microtechnologies. Lab on a Chip, 13(14):2731–2748, 2013, DOI:10.1039/C3LC50213A.

[49]   Charles E. Nwankire, Gerard G. Donohoe, Xin Zhang, Jonathan Siegrist, Martin Somers, Dirk Kurzbuch, Ruairi Monaghan, Maria Kitsara, Robert Burger, Stephen Hearty, Julie Murrell, Christopher Martin, Martha Rook, Louise Barrett, Stephen Daniels, Colette McDonagh, Richard O’Kennedy, and Jens Ducrée. At-line bioprocess monitoring by immunoassay with rotationally controlled serial siphoning and integrated supercritical angle fluorescence optics. Analytica Chimica Acta, 781:54–62, 2013, DOI:10.1016/j.aca.2013.04.016.

[50]   Neus Godino, Robert Gorkin III, Ana V. Linares, and Jens Ducrée. Comprehensive integration of homogeneous bioassays via centrifugo-pneumatic cascading. Lab on a Chip, 13(4):685–694, 2013, DOI:10.1039/C2LC40722A.

[51]   Maria Kitsara and Jens Ducrée. Integration of functional materials and surface modification methods for polymeric microfluidic systems. Journal of Micromechanics & Microengineering, 23(3):033001, 2013, DOI:10.1088/0960-1317/23/3/033001.

[52]   Robert Burger, Nuno Reis, João Garcia da Fonseca, and Jens Ducrée. Plasma extraction by centrifugo-pneumatically induced gating of flow. Journal of Micromechanics & Microengineering, 23(3):035035, 2013, DOI:10.1088/0960-1317/23/3/035035.

[53]   Vladimir Gubala, Jonathan Siegrist, Ruairi Monaghan, Brian O’Reilly, Ram Prasad Gandhiraman, Stephen Daniels, David E. Williams, and Jens Ducrée. Simple approach to study biomolecule adsorption in polymeric microfluidic channels. Analytica Chimica Acta, 760:75–82, 2013, DOI:10.1016/j.aca.2012.11.030.

[54]   Jochen Hoffmann, Lutz Riegger, Frederik Bundgaard, Daniel Mark, Roland Zengerle, and Jens Ducrée. Optical non-contact localization of liquid-gas interfaces on disk during rotation for measuring flow rates and viscosities. Lab on a Chip, 12(24):5231–5236, 2012, DOI:10.1039/C2LC40842B.

[55]   Neus Godino, Robert Gorkin III, Ken Bourke, and Jens Ducrée. Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices. Lab on a Chip, 12(18):3281–3284, 2012, DOI:10.1039/C2LC40223H.

[56]   Robert Burger and Jens Ducrée. Handling and analysis of cells and bioparticles on centrifugal microfluidic platforms. Expert Review of Molecular Diagnostics, 12(4):407–421, 2012, DOI:10.1586/ERM.12.28.

[57]   Llibertat Abad, Francisco Javier del Campo, Francesc Xavier Muñoz, Luis J. Fernández, Daniel Calavia, Gloria Colom, Juan Pablo Salvador, M. Pilar Marco, Vanessa Escamilla-Gómez, Berta Esteban-Fernández de Ávila, Susana Campuzano, María Pedrero, José Manuel Pingarrón, Neus Godino, Robert Gorkin III, and Jens Ducrée. Design and fabrication of a COP-based microfluidic chip: Chronoamperometric detection of Troponin T. Electrophoresis, 33(21):3187–3194, 2012, DOI:10.1002/elps.201200225.

[58]   Robert Gorkin, Charles Nwankire, Jennifer Gaughran, and Jens Ducrée. Centrifugo-pneumatic valving utilizing dissolvable films. Lab on a Chip, 12(16):2894–2902, 2012, DOI:10.1039/c2lc20973j.

[59]   Robert Burger, Patrick Reith, Victor Akujobi, and Jens Ducrée. Rotationally controlled magneto-hydrodynamic particle handling for bead-based microfluidic assays. Microfluidics & Nanofluidics, 13(4):675–681, 2012, DOI:10.1007/s10404-012-0994-7.

[60]   Daniel Kirby, Jonathan Siegrist, Laëtitia Zavattoni, Robert Burger, and Jens Ducrée. Centrifugo-magnetophoretic particle separation. Microfluidics & Nanofluidics, 13(6):899–908, 2012, DOI:10.1007/s10404-012-1007-6.

[61]   Robert Burger, Daniel Kirby, Macdara Glynn, Charles Nwankire, Mary O’Sullivan, Jonathan Siegrist, David Kinahan, Gerson Aguirre, Gregor Kijanka, Robert A. Gorkin III, and Jens Ducrée. Centrifugal microfluidics for cell analysis. Current Opinion in Chemical Biology, 16(3-4):409–414, 2012, DOI:10.1016/j.cbpa.2012.06.002.

[62]   Jens Ducrée. Special issue: Microfluidic lab-on-a-chip platforms for high-performance diagnostics. Diagnostics, 2(1):1, 2012, DOI:10.3390/diagnostics2010001.

[63]   Robert Burger, Patrick Reith, Gregor Kijanka, Victor Akujobi, Patrick Abgrall, and Jens Ducrée. Array-based capture, distribution, counting and multiplexed assaying of beads on a centrifugal microfluidic platform. Lab on a Chip, 12(7):1289–1295, 2012, DOI:10.1039/C2LC21170J.

[64]   Jens Ducrée. Next-generation microfluidic lab-on-a-chip platforms for point-of-care diagnostics and systems biology. Procedia Chemistry, 1(1):517–520, 2009, DOI:10.1016/j.proche.2009.07.129.

[65]   Stefan Haeberle, Lars Naegele, Robert Burger, Roland Zengerle, and Jens Ducrée. Alginate bead fabrication and encapsulation of living cells under centrifugally induced artificial gravity conditions. Journal of Microencapsulation, 25(4):267–274, 2008, DOI:10.1080/02652040801954333.

[66]   Jens Ducrée, Stefan Haeberle, Sascha Lutz, Sarah Pausch, Felix von Stetten, and Roland Zengerle. The centrifugal microfluidic Bio-Disk platform. Journal of Micromechanics & Microengineering, 17(7):S103–S115, 2007, DOI:10.1088/0960-1317/17/7/S07.

[67]   L. Riegger, M. Grumann, J. Steigert, S. Lutz, C. P. Steinert, C. Mueller, J. Viertel, O. Prucker, J. Rühe, R. Zengerle, and J. Ducrée. Single–step centrifugal hematocrit determination on a 10-$ processing device. Biomedical Microdevices, 9(6):795–799, 2007, DOI:10.1007/s10544-007-9091-1.

[68]   J. Steigert, S. Haeberle, C. Müller, C. P. Steinert, N. Gottschlich, H. Reinecke, J. Rühe, R. Zengerle, and J. Ducrée. Rapid prototyping of microfluidic chips in COC. Journal of Micromechanics & Microengineering, 17(2):333–341, 2007, DOI:10.1088/0960-1317/17/2/020.

[69]    J. Steigert, T. Brenner, M. Grumann, L. Riegger, S. Lutz, R. Zengerle, and J. Ducrée. Integrated siphon–based metering and sedimentation of whole blood for centrifugally integrated colorimetric assays. Biomedical Microdevices, 9(5):675–679, 2007, DOI:10.1007/s10544-007-9076-0.

[70]   Stefan Haeberle, Roland Zengerle, and Jens Ducrée. Centrifugal generation and manipulation of droplet emulsions. Microfluidics & Nanofluidics, 3(1):65–75, 2007, DOI:10.1007/s10404-006-0106-7.

[71]   S. Haeberle, N. Schmitt, R. Zengerle, and J. Ducrée. Centrifugo-magnetic pump for gas-to-liquid sampling. Sensors & Actuators A – Physical, 135(1):28–33, 2007, DOI:10.1016/j.sna.2006.09.001.

[72]   Stefan Haeberle, Thilo Brenner, Roland Zengerle, and Jens Ducrée. Centrifugal extraction of plasma from whole blood on a rotating disk. Lab on a Chip, 6(6):776–781, 2006, DOI:10.1039/b604145k.

[73]   M. Grumann, J. Steigert, L. Riegger, I. Moser, B. Enderle, G. Urban, R. Zengerle, and J. Ducrée. Sensitivity enhancement for colorimetric glucose assays on whole blood by on–chip beam–guidance. Biomedical Microdevices, 8(3):209–214, 2006, DOI:10.1007/s10544-006-8172-x.

[74]    J. Steigert, M. Grumann, M. Dube, W. Streule, L. Riegger, T. Brenner, P. Koltay, K. Mittmann, R. Zengerle, and J. Ducrée. Direct hemoglobin measurement on a centrifugal microfluidic platform for point-of-care diagnostics. Sensors & Actuators A – Physical, 130-131:228–233, 2006, DOI:10.1016/j.sna.2006.01.031.

[75]   J. Steigert, M. Grumann, T. Brenner, L. Riegger, J. Harter, R. Zengerle, and J. Ducrée. Fully integrated whole blood testing by real–time absorption measurement on a centrifugal platform. Lab on a Chip, 6(8):1040–1044, 2006, DOI:10.1039/b607051p.

[76]   Jens Ducrée, Stefan Haeberle, Thilo Brenner, Thomas Glatzel, and Roland Zengerle. Patterning of flow and mixing in rotating radial microchannels. Microfluidics & Nanofluidics, 2(2):97–105, 2005, DOI:10.1007/s10404-005-0049-4.

[77]   Stefan Haeberle, Thilo Brenner, Hans-Peter Schlosser, Roland Zengerle, and Jens Ducrée. Centrifugal micromixer. Chemical Engineering & Technology, 28(5):613–616, 2005, DOI:10.1002/ceat.200407138.

[78]   J. Steigert, M. Grumann, T. Brenner, K. Mittenbühler, T. Nann, J. Rühe, I. Moser, S. Haeberle, L. Riegger, J. Riegler, W. Bessler, R. Zengerle, and J. Ducrée. Integrated sample preparation, reacting and detection on a high-frequency centrifugal microfluidic platform. Journal of Laboratory Automation, 10(5):331–341, 2005, DOI:10.1016/j.jala.2005.07.002.

[79]   M. Grumann, T. Brenner, C. Beer, R. Zengerle, and J. Ducrée. Visualization of flow patterning in high-speed centrifugal microfluidics. Review of Scientific Instruments, 76(2):025101, 2005, DOI:10.1063/1.1834703.

[80]   Jens Ducrée, Thilo Brenner, Stefan Haeberle, Thomas Glatzel, and Roland Zengerle. Multilamination of flows in planar networks of rotating microchannels. Microfluidics & Nanofluidics, 2(1):78–84, 2005, DOI:10.1007/s10404-005-0056-5.

[81]   L. Riegger, M. Grumann, T. Nann, J. Riegler, O. Ehlert, K. Mittenbühler, G. Urban, L. Pastewka, T. Brenner, R. Zengerle, and J. Ducrée. Read-out concept for multiplexed bead-based fluorescence immunoassays on centrifugal microfluidic platforms. Sensors & Actuators A – Physical, 126(2):455–462, 2005, DOI:10.1016/j.sna.2005.11.006.

[82]   M. Grumann, A. Geipel, L. Riegger, R. Zengerle, and J. Ducrée. Batch-mode mixing with magnetic beads on centrifugal microfluidic platforms. Lab on a Chip, 5(5):560–565, 2005, DOI:10.1039/b418253g.

[83]   T. Brenner, T. Glatzel, R. Zengerle, and J. Ducrée. Frequency-dependent transversal flow control in centrifugal microfluidics. Lab on a Chip, 5(2):146–150, 2005, DOI:10.1039/b406699e.

[84]   M. Grumann, M. Dobmeier, P. Schippers, T. Brenner, C. Kuhn, M. Fritsche, R. Zengerle, and J. Ducrée. Aggregation of bead-monolayers in flat microfluidic chambers – Simulation by the model of porous media. Lab on a Chip, 4(3):209–213, 2004, DOI:10.1039/b313432f.

[85]   J. Ducrée and R. Zengerle. Microfluidics – Markets and technologies. MST News, 05(02):8–10, 2002.

[86]   J. Ducrée, B. de Heij, H. Sandmaier, and R. Zengerle. Fabrication of microarrays on an industrial scale with TopSpot. MST News, 4:22–23, 2000.

[87]   J. Ducrée, H. Sandmaier, and W. Lang. MEMS: From development to production. Seisan-Kenkyu, 52(6):22–25, 2000, Link.

[88]   J. Ducrée, H. J. Andrä, and U. Thumm. Neutralization of hyperthermal multiply charged ions at surfaces: Comparison between the extended dynamical over-barrier model and experiment. Physical Review A, 60(4):3029–3043, 1999, DOI:10.1103/PhysRevA.60.3029.

[89]   J. Ducrée, J. Mrogenda, E. Reckels, and H. J. Andrä. Fingerprints of early K–Auger emission from slow highly charged ions approaching surfaces. In P. H. Mokler, F. Bosch, Th. Stöhlker, and A. Wolf, editors, Proceedings of the IX International Conference on the Physics of Highly Charged Ions in Bensheim, Germany, 1998, volume T80, pages 217–219, Stockholm, 1999. Physica Scripta. DOI:10.1238/Physica.Topical.080a00217.

[90]   J. Ducrée, H. J. Andrä, and U. Thumm. Improved dynamic simulation of highly charged ion–surface collisions. In P. H. Mokler, F. Bosch, Th. Stöhlker, and A. Wolf, editors, Proceedings of the IX International Conference on the Physics of Highly Charged Ions in Bensheim, Germany, 1998, volume T80, pages 220–222, Stockholm, 1999. Physica Scripta. DOI:10.1238/Physica.Topical.080a00220.

[91]   J. Ducrée, J. Mrogenda, E. Reckels, and H. J. Andrä. Near–surface K-Auger emission in low-energy scattering of highly charged ions with surfaces. Nuclear Instruments & Methods in Physics Research Section B, 145(4):509–521, 1998, DOI:10.1016/S0168-583X(98)90554-7.

[92]   J. Ducrée, F. Casali, and U. Thumm. Extended classical over–barrier model for collisions of highly charged ions with conducting and insulating surfaces. Physical Review A, 57(1):338–350, January 1998, DOI:10.1103/PhysRevA.57.338.

[93]   J. Ducrée, R. Díez Muiño, J. Mrogenda, E. Reckels, M. Rüther, A. Heinen, C. Vitt, M. Venier, J. Leuker, and H. J. Andrä. Interactions of Ar9+ and metastable Ar8+ with a Si(100)–surface at velocities near the image acceleration limit. Physical Review A, 57(3):1925–1937, 1998, DOI:10.1103/PhysRevA.57.1925.

[94]   J. Ducrée, J. Mrogenda, E. Reckels, M. Rüther, A. Heinen, C. Vitt, M. Venier, J. Leuker, and H. J. Andrä. Signature of metastable electrons in highly charged ion surface interactions. Physical Review A, 58(3):R1649–R1652, 1998, DOI:10.1103/PhysRevA.58.R1649.

File created on Tue, 23 Jan 2024 10:28:20 +0000.